Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transp Porous Media ; 147(1): 93-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36628266

RESUMO

In this paper, we derive an effective model for transport processes in periodically perforated elastic media, taking into account, e.g., cyclic elastic deformations as they occur in lung tissue due to respiratory movement. The underlying microscopic problem couples the deformation of the domain with a diffusion process within a mixed Lagrangian/Eulerian formulation. After a transformation of the diffusion problem onto the fixed domain, we use the formal method of two-scale asymptotic expansion to derive the upscaled model, which is nonlinearly coupled through effective coefficients. The effective model is implemented and validated using an application-inspired model problem. Numerical solutions for both, cell problems and macroscopic equations, are investigated and interpreted. We use simulations to qualitatively determine the effect of the deformation on the transport process.

2.
J Theor Biol ; 496: 110229, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32259543

RESUMO

In this paper, we develop a mathematical model for the early stage of atherosclerosis, as a chronic inflammatory disease. It includes also processes that are relevant for the "thickening" of the vessel walls, and prepares a more complete model including also the later stages of atherosclerosis. The model consists of partial differential equations: Navier-Stokes equations modeling blood flow, Biot equations modeling the fluid flow inside the poroelastic vessel wall, and convection/chemotaxis-reaction-diffusion equations modeling transport, signaling and interaction processes initiating inflammation and atherosclerosis. The main innovations of this model are: a) quantifying the endothelial permeability to low-density-lipoproteins (LDL) and to the monocytes as a function of WSS, cytokines and LDL on the endothelial surface; b) transport of monocytes on the endothelial surface, mimicking the monocytes adhesion and rolling; c) the monocytes influx in the lumen, as a function of factor increasing monocytopoiesis; d) coupling between Navier-Stokes system, Biot system and convection/chemotaxis-reaction-diffusion equations. Numerical simulations of a simplified model were performed in an idealized two-dimensional geometry in order to investigate the dynamics of endothelial permeability, and the growth and spread of immune cells populations and their dependence in particular on low-density-lipoprotein and wall-shear stress.


Assuntos
Aterosclerose , Modelos Cardiovasculares , Humanos , Lipoproteínas LDL , Permeabilidade , Estresse Mecânico
3.
Free Radic Res ; 53(9-10): 979-992, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31476923

RESUMO

Elevated intracellular levels of reactive oxygen species (ROS), e.g. resulting from exposure to xenobiotics, can cause severe damages. Antioxidant defence mechanisms, which involve regulation of enzyme activities, protect cells to a certain extent. Nevertheless, continuous or increased exposure can overwhelm this system resulting in an adverse cellular state. To simulate exposure scenarios and to investigate the transition to an adverse cellular state, a mathematical model for the dynamics of ROS in response to xenobiotic-induced oxidative stress has been developed. It is based on exposure experiments of human urothelial cells (RT4) to the nitrated polycyclic aromatic hydrocarbon 3-nitrobenzanthrone (3-NBA), a component of diesel engine exhaust, and takes into account the following metabolic pathways of the antioxidant defence system: glutathione redox cycle scavenging directly ROS, the pentose phosphate pathway and the gluconate shunt as NADPH supplier and the beginning of glycolysis. In addition, ROS generation due to the bioactivation of 3-NBA has been implemented. The regulation of enzyme activities plays an important role in the presented mathematical model. The in silico model consists of ordinary differential equations on the basis of enzyme kinetics and mass action for the metabolism of 3-NBA. Parameters are either estimated from performed in vitro experiments via least-squares fitting or obtained from the literature. The results underline the importance of the pentose phosphate pathway to cope with oxidative stress and suggest an important role of the gluconate shunt during low-dose exposure.


Assuntos
Gluconatos/metabolismo , Estresse Oxidativo/genética , Via de Pentose Fosfato/fisiologia , Espécies Reativas de Oxigênio/uso terapêutico , Xenobióticos/efeitos adversos , Humanos , Modelos Teóricos , Espécies Reativas de Oxigênio/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-26913283

RESUMO

Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P increases for scenarios where microcompartimentation of enzymes occurs. These results show that spatially resolved models are needed in the description of the conversion processes. Finally, the enzyme stoichiometry on the nano-beads is determined, which maximizes the production of glucose-6-phosphate.

5.
J Math Biol ; 72(4): 973-996, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26385578

RESUMO

In this paper, a model is developed for the evolution of plaques in arteries, which is one of the main causes for the blockage of blood flow. Plaque rupture and spread of torn-off material may cause closures in the down-stream vessel system and lead to ischemic brain or myocardial infarctions. The model covers the flow of blood and its interaction with the vessel wall. It is based on the assumption that the penetration of monocytes from the blood flow into the vessel wall, and the accumulation of foam cells increasing the volume, are main factors for the growth of plaques. The dynamics of the vessel wall is governed by a deformation gradient, which is given as composition of a purely elastic tensor, and a tensor modeling the biologically caused volume growth. An equation for the evolution of the metric is derived quantifying the changing geometry of the vessel wall. To calculate numerically the solutions of the arising free boundary problem, the model system of partial differential equations is transformed to an ALE (Arbitrary Lagrangian-Eulerian) formulation, where all equations are given in fixed domains. The numerical calculations are using newly developed algorithms for ALE systems. The results of the simulations, obtained for realistic system parameters, are in good qualitative agreement with observations. They demonstrate that the basic modeling assumption can be justified. The increase of stresses in the vessel wall can be computed. Medical treatment tries to prevent critical stress values, which may cause plaque rupture and its consequences.


Assuntos
Modelos Cardiovasculares , Placa Aterosclerótica/etiologia , Algoritmos , Artérias/fisiopatologia , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Hemorreologia , Humanos , Hidrodinâmica , Conceitos Matemáticos , Placa Aterosclerótica/fisiopatologia
6.
J Math Biol ; 56(5): 579-610, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17906861

RESUMO

It has been shown that hematopoietic stem cells migrate in vitro and in vivo following the gradient of a chemotactic factor produced by stroma cells. In this paper, a quantitative model for this process is presented. The model consists of chemotaxis equations coupled with an ordinary differential equation on the boundary of the domain and subjected to nonlinear boundary conditions. The existence and uniqueness of a local solution is proved and the model is simulated numerically. It turns out that for adequate parameter ranges, the qualitative behavior of the stem cells observed in the experiment is in good agreement with the numerical results. Our investigations represent a first step in the process of elucidating the mechanism underlying the homing of hematopoietic stem cells quantitatively.


Assuntos
Quimiotaxia/fisiologia , Células-Tronco Hematopoéticas/citologia , Modelos Biológicos , Quimiocina CXCL12/fisiologia , Simulação por Computador , Humanos , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...